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The damping of waves on the surface of a viscous fluid covered with a sur-
factant film has been studied by several authors. Methematical investigation
of this phenomenon involves considerable difficulties. Levich in [1] pro-
posed a hydrodynamic theory of wave damping and solved the problem of wave
damping on the surface of an infinitely deep fluld. However, the exact solu-
tion of the problem for a fluld of finite depth 1s qulite cumbersome and dif-
ficult of surveillance, necessitating the construction of simple approximate
solutions. Moiseev [2 ahd 3] suggested a method for constructing asymptotic
solutions for the case where the Reynolds number 1s large. In the author'e
studies [4 and 5] this method was used to solve a number of problems concern=-
ing a clean free surface. The present paper contains the solution of the
plane linear problem on the damping of waves on & viscous fluid of finite
depth whose free surface 1s covered with a surfactant. The formulation of
the problem was communlicated to the author by Levich.

Let the x-axis of the coordinate system Oxy coincide with the unper-
turbed surface of the fluid and let the y-axis be directed vertically upward.
We introduce the dimensionless variables
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Here h 1s the depth of the fluld, T 1is the characteristic time, ¢
is the characteristic amplitude, V¥V 1is the velocity, and P 18 the pressure.
We reduce the equations of motion of the viscous fluld to the following form:
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Here R 1s the Reynolds number, F 1is the PFroude number, and the equa-
gion of the free surface y = af(x, ¢} in dimensionless variables is of the
orm
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The condition of adhesion

U= uy =0 for = —1 3)
must be fulfilled at the bottom.
On the free surface the boundary conditions are of the form [1]
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Here p,, 18 the normal component of the tension vector; P,y is the tan-
gentlal component of the tension vector; p, 1s the capillary pressure; P,
is the tenslion associated with the tangentfil force due to the presence of
the surfactant film on the free surface; I = I'(x) 1s the surfactant concen-
tration; o(C) is the variable coefficient of surface tension.

To these conditions we must also add the kinetic condition
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Conditions (4) in dimensional parameters are of the form
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With large Reynolds numbers it is also interesting to consider those sur-
factants which have the maximum effect on damping. In this limiting case,
the surfactant film represents an incompressible plate which osclllates ver-
tically. We shall assume also that the coefficient of surface tension af(T)
1s weakly dependent on the surfactant concentration and will therefore con-
sider it constant. As was shown by Levich [1], in the case described bound-
ary condition (5) on the free surface must be replaced by the condition
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In dimensionless variables conditions (5) and (6) become
: i al?
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We represent the velocity vector u as follows:
u=ve+ y*y (V% = (Y, ~ @z)) 9

Then, as we know [2 and 6), equations of motion (2) and the boundary con-
ditions can be written as
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The first condition in (12) was obtained with the aid of (7), the last
relation in (10), and the kinematic condition.

We shall now turn to the problem of free osclllations attempting to solve
problem (10) to (12) in the form

op=®E N, p=YEMN (13)

Where o 1is some (unknown) complex number which determines the damping
decrement and the oscillation frequency. In this case the problem becomes

AD =0, Y == R71AY (14)

. ¥, =0, O, — ¥, =0 for N=—1 (15)
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An approximate solution of the problem (14) to (168 can be obtained with
the aid of the asymptotic method ﬁroposed by Moiseev [2 and 3]. The author
employed thls method previously (4% and 5] in constructing the asymptotic
solutions of several problems on the oscillation of a viscous fluid with a
clean free surface. The concept on which the method 1s based is as follows.
For large R , a small parameter appears in front of the higher-order deriva-
tives in Equation (14). If this parameter is set equal to zero, then problem
(14) to (16) degenerates into the corresponding problem about waves on the
surface of an ideal fluid ( ¥ = 0 and conditions (15) and (16) do not apply).
If this parameter differes from zero and is sufficliently small, then the
function Y 1s a function of the boundary layer type (7]

The function Y compensates the inconsistency of boundary conditions (15)
and (16), since these conditions cannot be satisfied with the aid of function
® alone. In accordance with the indicated character of the function v ,
the latter is replaced for consideration by the function y, and Y, which
satisfy Equation (14); ¥, compensates the inconsistency of boundary condi-
tions %15), while ¥, compensates that of (16). In addition, the functions
Y,’ and ¥, must vanish far away from the corresponding boundary, i.e.
limy,= 0 a8 n->=, 1limy¥, as n - — =

Asymptotic representations for the function ¥, and Y, can now be found
by expanding the required functions into asymptotic series in powerse of 1//R.
The first terms of such expansions are of physical interest. In particular,
we find that the function ¥, (as well as the function Y;) can be found
from the ordinary differential equation
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to within 0O (1 /R’

Without considering the details involved in the construction of the asymp-
totic solution (see [# and 5]), let us cite the results of the computations
to within 0(1/R) (the form of the solution corresponds to progressive waves)
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We note that in contrast to the case where the free surface 1s clean, the
function Y; near the free surface has the same order 1//R as the function
Y, near the bottom. Substituting the expressions for , and 9, from (17)
into (16), we obtain the approximate equation for determining o
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This equation is not valld for all dimensionless numbers w , since for
excessively small w the Reynolds number no longer can be considered large,
while for overly large w (short waves) the linear theory 1s no longer appli-
cable, and, in addition, the third term of Equation (18) is no longer small
in comparison with the first two. However the interval of variation of w
is sufficlently broad (see [5]). If w 1lies in the indicated interval,
then, by virtue of Rouché's thebérem, Equation (18) has two roots, i.e.exactly
the same number as in the case of an 1deal fluid. Seeking these roots in
the form 6

G=°o+ﬁ+%+-“ (19)

we find that to within 0(1/r)
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From this expression 1t follows that the oscillation frequency & and
the damping decrement g are given by Expressions

6 =4 VY ouhe (F 13+ Ko?)i —
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For comparison, let us cite analogous expressions for the case of a clean
f:gface ( 8¢ ie the oscillation frequency and 8, is the damping decrement)
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where K, = g%/ ph* and ae 1s the coefficient of surface tension.

Considering Formulas (20) to (23), we arrive at the following conclusions.
For long waves { @ sufficiently small), the damping decrement # 1is twice
as large as Bo in absolute value. For shorter waves this difference increa-
ses: as w increases, |g| increases while |Bo| diminishes. In addition,
both g and Bo (in contrast to the case of an infinitely deep fluld) depend
on the coefficient of surface téension. The oscilllation frequencies &8 and
6s are smaller than for an ideal fluid. The amount by which the oscillation
frequency diminishes is in both cases {to within 0(1/R)) equal to the abso-
lute value of the damping decrement.

The author is grateful to V.G. levich for drawlng his attention to the
problem and to N.N. Moiseev for his valuable comments.
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