
&et the x-axis of the coordinate system Oxy coincide wlth.the unper- 
turbed surface of the fluid and let the y-axis be dlredted vertically upward. 

introduce the dlmenslonless variables We 

c=+, q+, t T 
7=7ji, U= TV, 

p_pTa 
- pah 

Is 
We 

Here h Is the depth of the fluid, T Is the characteristic time, a 
the characteristic amplitude, V Is the velocity, and p Is the pressure. 
reduce the equations of motion of the viscous fluid to the following form: 
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The damping of waves on the surface of a viscous fluid covered with a sur- 
factant film has been studied by several authors. Methematlcal Investigation 
of this phenomenon Involves considerable dlfflcultles. Levlch In cl] pro- 
posed a hydrodynamic theory of wave damping and solved the problem of wave 
damping on the surface of an infinitely deep fluid. However, the exa'ct solu- 
tion of the problem for a fluid of finite depth Is quite cumbersome and dlf- 
flcult of surveillance, necessitating the construction of simple approximate 
solutions. Molseev [2 ahd 33 auggeated a method for constructing asymptotic 
solutions for the case where the Reynolds number Is large. In the author's 
studies [4 and 51 this method was used to solve a number of problems concern- 
ing a clean free surface. The present paper contains the solution of the 
plane linear problem on the damping &f waves on a viscous fluid of finite 
depth whose free surface Is covered with a surfactant. The formulation of 
the problem was couxnunlcated to the author by Levlch. 

$+V(P+&) =-&u. vu=0 

S=$, v = (Vl, h), u = (4, uz), R=$ - 
p =W’P2 

gh 

Here R Is the Reynolds number, F Is the Froude number, and the equa- 
tion of the free surface y = a/(x, t) In dimensionless variables Is of the 
form 

'1 =-&SW) (2) 
The condition of adhesion 

u.l=l+=o for q = - 1 (3) 
must be fulfilled at the bottom. 

On the free surface the boundary conditions are of the form [l] 

901 



Pnn+P.=o* PyyfPy==O for q = 0 (5) 

pa=-a(r&, aa ar 
p,=-paz 

Here P,. Is the normal component of the tension vector; pYY Is the tan- 
gential component of the tension vector; p Is the capillary pressure; P, 
is the tension associated with the tangentfal force due to the presence of 
the surfactant film on the free surface; r I r(r) 1s the surfactant concen- 
tration; c(r) Is the variable coefficient of surface tension. 

To these conditions we must also add the kinetic condition 

Conditions (4) In dimensional parameters are of the form 

With large Reynolds numbers It Is also Interesting to consider those sur- 
factants which have the maximum effect on damping. In this llmltlng case, 
the surfactant film represents an Incompressible plate which oscillates ver- 
tically. We shall assume also that the coefficient of surface tension a(r) 
1s weakly dependent on the surfactant concentration and will therefore con- 
sider It constant. As was shown by Levlch cl], In the case described bound- 
ary condition (5) on the free surface must be replaced by the condition 

In dimensionless variables conditions (5) and (6) become 

We represent the 

u1 =z 0 for q = 0 

velocity vector u as follows: 

u = v*(p + v*+ 
Then, as we know (2 and 61, equations 

dltlons can be written as 

r1 (I, 0, 1) = 0 (6) 

- P + + uz,, = K g for q=O(K=;;) 

(8) 

A(p=u, 

VY = my - cp& (9 
of motion (2) and the boundary con- 

(10) 

‘PC + $, = 0, ‘Pn-$t=O (9 = - 1) (11) 
1 2 a a35 

'p~~+,(cP,-cP~)=~~~~ell-'p~,)+~,I,,, (14 

'PE es, = 0 (11 = 0) 

The first condition In (12) was obtained with the aid of (7), the la& 
relation In (lo), and the kinematic condition. 

We shall now turn to the problem of free oscillations attempting to solve 
problem (10) to (12) In the form 

cp== (D(E,q)e"', II,- Y(E,rl)e" (13) 

Where 0 Is some (unknown) complex number which determines the damping 
decrement and the oscillation frequency. In this case the problem becomes 

ACP = 0, BY=-_-~AY (14) 

0,- + Y, == 0, a,,-Y, =o for q=--1 (15) 

6% + F-'(cD,-Y~)=2aR-l(Y~,- mn,)+ li(Omi<- YzJ (16) 

0: + Y'., 2 II for ql"(l 



An approximate solutpon of the problem (14) to (16 ctn be obtained with 
the aid of the aBymptot.lc method 
employed this method previously [ f: 

roposed by Molseev 2 and 33. The author 
and 53 In constructing the asymptotic 

solutions of several problems on the oscillation of a viscous fluid with a 
clean free surface. !!!he concept on which the method Is based Is as follows. 
For large A a small parameter appears In front of the higher-order derlva- 
cives In Equation (14). If this parameter Is set equal to zero, then problem 
(14) to (16) degenerates Into the corresponding problem about waves on the 
surface of an Ideal fluid ( Y 3 0 and conditions (15) and (16) do not apply). 
If this parameter differes from zero and is sufficiently small, then the 
function y is a function of the boundary layer tYPe 171. 

The function Y compensates the Inconsistency of boundary conditions (l5) 
and (16), since these conditions cannot be satisfied with the aid of function 
@ alone. In accordance with the Indicated character of the function Y , 
the latter is replaced for consideration by the function y1 and 1, which 
satlsf 

i 
Equation (14); Y1 compensates the Inconsistency of boundary condl- 

tions 15), while Ya compensates that of (16). In addition, the functions 
Yl ’ and ‘1. must vanish far away from the corresponding boundary, I.e. 
lim Y1= 0 as qq-, lim Y2 as q + - m . 

Asymptotic representations for the function y1 and Y. can now be found 
by expanding the required functions Into asymptotic series In powers of l/JR. 
The first terms of such expansions are of physical Interest. In particular, 
we find that the function y1 (as well as the function 'I*) can be found 
from the ordinary differential equation 

to within O(i/ RSrz) . 

Without considering the details involved In the construction of the asymp- 
totic solution (see [4 and 5]), let us cite the results of the computatlone 
to within 0(1/R) (the form of the solution corresponds to progressive waves) 

We note that In contrast to the case where the free surface Is clean, the 
function lo near the free surface has the same 
y1 near.the bottom. Substituting the expressions for 
Into (16), we obtain the approximate equation for 

This equation Is not valid for all dimensionless numbers UJ , since for 
excessively small UJ the Reynolds number no longer can be considered large, 
while for overly large w (short waves) the linear theory la no longer appll- 
cable, and, In addition, the third term of Equation (18) It no longer small 
in comparison with the firat two. However the Interval of variation of w 
Is sufficiently broad (set [5]). If w lies In the indicated interval, 
then, by virtue of Rouchb's thtbrem, Equation (18) has two roots, i.t.txacdly 
the same number as In the case of an ideal fluid. Seeking thtst roots In 
the form 

a=o#J+ +L+$+... 

we find that to within 0(1/R) 

(19) 

(1 f i) 0 
4 

a=* I/otulhcl(F-‘+Ko2)i- )/o-w(F-l+Ko2) (lscahzo) 
1/fliiuli2o 

From this expression it follows that the osclllatl& frequency b and 
the damping decrement B are given by Expressions 



For comparison, let us cite analogous expressions for the case of a clean 
surface ( b. Is the oscfllatlon frequency and $,, Is the damping decrement) 

(22) 

where K, = a,T" / [Jh’ and a0 Is the coefficient of surface tension. 

Considering Formulas (20) to (23), we arrive at the following conclusions. 
For long waves ( m sufficiently small), the damping decrement 8 is twice 
as large as PO In absolute value. For shorter waves this difference increa- 
ses: as w increases, 161 Increases while l&l diminishes. In addition, 
both @ and So (in contrast to the case of an InfInItely deep fluid) depend 
on the coefficient of surface tension. The oscillation frequencies b and 
b. are smaller than for an Ideal fluid. The amount by which the oscillation 
frequency diminishes is in both cases (to wfthln O(lb)) equal to the abso- 
lutd value of the damping decrement. _ 

The author is grateful to V.G. Levich for 
problem and to N.N. Moiseev for his valuable 

drawing his attention to the 
conznents. 
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